
4
An FPTAS for the 1-Hotlink Assign-
ment Problem

In this section we present the first fully polynomial approximation scheme

for the 1-Hotlink Assignment Problem. That is, for any instance (T,w) and

any real number ǫ > 0, the algorithm finds a 1-assignment for T that costs at

most (1 + ǫ) times the cost of the optimal assignment, and the running time

of the algorithm is bounded by a polynomial function of the instance size and

1/ǫ. Throughout this section, we assume without loss of generality that w(u)

is an integer for all u ∈ T 1.

In the previous section we presented the algorithm PATH that has the

following property: for any tree T and integer D, it calculates in O(n3D) the

best assignment for T among the assignments A such that the height of TA

is at most D. In order to achieve a pseudo-polynomial algorithm and then an

FPTAS, we have to argue that for each tree T with n nodes and weight function

w, there is an optimal assignment A∗ such that the height of TA∗
is small, more

specifically O(log w(T)+ log n). Therefore, if we set D = G · (log w(T)+ log n),

for a suitable constant G, the algorithm PATH finds an optimal assignment

for the 1-Hotlink Assignment Problem in O(n3G(log w(T)+log n)) = poly(n ·w(T))

time. With this pseudo-polynomial algorithm in hand, we scale the weight

function w(T) according to ǫ making it such that w(T) = poly(n/ǫ), achieving

polynomial time complexity while increasing the solution by only a (1 + ǫ)

factor.

The crucial step in the development of these results is to guarantee the

existence of an optimal tree with small height. Informally, the idea used to

establish this property is to pick an optimal enhanced tree TA∗
and prove that

if we walk c steps down in TA∗
we reach trees with (geometrically) reduced

weight, otherwise this enhanced tree could be improved and would contradict

1By definition, w is a rational function and hence there is an integer η such that w′(u) =
ηw(u) is integer for all u ∈ T . By linearity it follows that EP(T,A,w′) = EP(T,A,w) for each
assignment A. Therefore, an α-approximate solution for (T,w′) is also α-approximation for
(T,w). In addition, notice that this reduction preserves the time complexity of the FPTAS,
which is independent of w. Then we can find an (1 + ǫ)-approximate solution for (T,w) in
poly(n, 1/ǫ) time by executing the FPTAS over the scaled instance (T,w′)

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 4. An FPTAS for the 1-Hotlink Assignment Problem 25

its optimality. The argument turns out to be fairly intricate, so we devote

Section 4.1 to prove this result, which is stated more formally as follows:

Theorem 2 Consider an instance (T,w) of the 1-HAP with T rooted at node

r and let A∗ be an optimal 1-assignment for T . Then, there is a constant

c > 2 such that for every node u of T with d(r, u, T + A∗) = c we have

w(TA∗

u) ≤ (c−1)w(T)
c

.

Then it can be shown that A∗ must contain an optimal assignment for

each subtree TA∗

u . Consequently, we can use the previous theorem for subtrees

of TA∗
to argue that every time we walk down c steps in TA∗

, the weight of the

subtrees are reduced by at least a constant factor of (c− 1)/c. Because w is an

integer function, it follows that in O(log w(T)) steps we reach subtrees of TA∗

that have zero weight. As these subtrees with zero weight do not influence the

cost of the solution, we can employ the result from [PLS04b] to assume without

loss of generality that their heights are at most O(log n). Consequently, the

total height of TA∗
is O(log w(T) + log n).

Lemma 4 For any tree T with n nodes and integer valued weight function w,

there is an optimal 1-assignment A∗ for (T,w) such that TA∗
has height at

most O(log w(T) + log n).

As an immediate consequence we have a pseudo-polynomial algorithm

for 1-HAP:

Theorem 3 Let (T,w) be an instance for the 1-HAP, where w is an integer

valued function. For a suitable constant G, the algorithm PATH set with

D = G(log w(T)+log n) finds an optimal 1-assignment for T in poly(n ·w(T))

time.

Now we show how to reduce the weight of the tree T in order to

obtain in polynomial time an arbitrarily close approximation for the 1-Hotlink

Assignment Problem. The argument is rather standard and is the same one

used to obtain the FPTAS for the knapsack problem.

Theorem 4 There is a fully polynomial time approximation scheme for the

1-Hotlink Assignment Problem.

Proof : Assume that T is not a single node, otherwise the result trivially

holds. Let W be the weight of the heaviest node of T under w, namely

W = maxu∈T{w(u)}. Define K = ǫ·W
n2 and the weight function w′ such

that w′(u) = ⌈w(u)/K⌉ for every node u ∈ T . Analogously, let W ′ =

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 4. An FPTAS for the 1-Hotlink Assignment Problem 26

maxu∈T{w
′(u)}; notice that W ′ = ⌈W/K⌉ ≤ (n2)/ǫ + 1. Thus, w′(T) is less

than nW ′ ≤ (n3)/ǫ+n. As a consequence, the dynamic programming algorithm

runs in polynomial time on n and 1/ǫ over the instance (T,w′).

Now we argue that the solution for (T,w′) is an (1 + ǫ)-approximation

for (T,w). Let A∗ be an optimal solution for (T,w) and A be the solution

returned by the algorithm. Clearly for each node u we have K ·w′(u) ≥ w(u).

Therefore:

K · EP(T,A,w′) =
∑

u∈T

d(r, u, T + A)K · w′(u)

≥
∑

u∈T

d(r, u, T + A)w(u) = EP(T,A,w) (1)

Analogously, K · w′(u) ≤ w(u) + K and hence K · EP(T,A∗, w′) ≤

EP(T,A∗, w) +
∑

u d(r, u, T + A∗) ·K. Clearly the distance between any pairs

of nodes in T + A∗ is at most n, thus K · EP(T,A∗, w′) ≤ EP(T,A∗, w) +

n2 · K ≤ EP(T,A∗, w) + ǫ · W . From the optimality of A∗ it follows that

K · EP(T,A,w′) ≤ EP(T,A∗, w) + ǫ · W . Recalling that only leaves of T have

nonzero weight, it follows that the cost of the optimal solution for (T,w) is at

least W , and consequently:

K · EP(T,A,w′) ≤ EP(T,A∗, w) + ǫ · EP(T,A∗, w) = (1 + ǫ)OPT(T,w) (2)

By chaining inequalities (1) and (2) we complete the proof:

EP(T,A,w) ≤ K · EP(T,A,w′) ≤ (1 + ǫ)OPT(T,w) (3)

In sum, by executing the pseudo-polynomial algorithm stated in Theorem

3 for the scaled instance (T,w′) we have a (1+ǫ)-approximation for the original

instance (T,w) in poly(n/ǫ) time. �

In order to establish these results, we need to prove the claims made in

Theorem 2 and Lemma 4. The former is done in the next section. Although

the arguments used to prove Lemma 4 were already sketched in previous

paragraphs, the actual proof is very technical and we defer it to the appendix.

4.1 Proof of Theorem 2

Before starting the proof itself, we need to introduce some notation. We

define Tu(A) as the subtree of Tu left after some parts of it have been ‘adopted’

by proper ancestors of u due to an assignment A (Figure 4.1). More formally,

we have the following definitions whose equivalence follows from the greedy

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 4. An FPTAS for the 1-Hotlink Assignment Problem 27

user model:

u

Tu

(a)

u

Tu(A)

(b)

Figure 4.1: Illustration of tree Tu(A)

Definition 1 Consider a tree T and a non-crossing assignment A for it. Let

u be a node in T . Then we have the following equivalent definitions:

(i) Let U = {v ∈ T : user path from r(T) to v in T + A contains the node u}.

Then Tu(A) is the subgraph of T induced by U .

(ii) Let U = {v ∈ T : (w, v) ∈ A, w is a proper ancestor of u and v is a

proper descendant of u}. Then Tu(A) = Tu −
(
⋃

v∈U Tv

)

.

Although the trees TA
u and Tu(A) are different (for instance, TA

u has

hotlinks of A as arcs), it follows from part (i) of the above definition that the set

of nodes of TA
u is equal to the set of nodes of Tu(A). Due to this correspondence,

henceforth we use the notation Tu(A) instead of TA
u , as the former allows us

to visualize all subsequent constructions directly on the original tree T .

Now we are ready to start the proof of Theorem 2. Consider an instance

(T,w) of the 1-HAP and an optimal 1-assignment A∗ for it. (In order to

simplify the notation, Tu is used as a shorthand for Tu(A
∗).) We assume

that w(T) > 0, otherwise the theorem trivially holds. Moreover, we assume

without loss of generality2 that: (i) A∗ is a non-crossing assignment; (ii) it only

contains proper hotlinks, that is hotlinks of the form (u, v) where v 6= u and

v is not a child of u in T ; (iii) there is at most one hotlink in A∗ pointing to

each node of T .

The proof goes by contradiction. Assume that the theorem does not hold

for A∗, that is, A∗ satisfies the following hypothesis:

Hypothesis 1 For the constant c > 2 given by Theorem 2, there is a node

h ∈ T such that d(r, h, T + A∗) = c and w(Th) > (c − 1)w(T)/c.

2It is easy to see that for each assignment A∗ that do not satisfy some of these hypothesis,
there is an assignment A∗′ that satisfies them and is such that the user path from r to every
node u ∈ T is the same in T +A∗ and T +A∗′. Therefore, if the enhanced tree TA∗′

complies
with the statement of the theorem, then so does the enhanced tree TA∗

.

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 4. An FPTAS for the 1-Hotlink Assignment Problem 28

(Notice that due to the correspondence between nodes of the trees Th

and TA∗

h , in the hypothesis we used w(Th) instead of w(TA∗

h).)

In the sequel we find a 1-assignment A which costs strictly less than the

optimal assignment A∗, thus reaching the contradiction.

So let h be a node of T satisfying Hypothesis 1 and let Q = (q1 → . . . →

q|Q| = h) be the user path from r to h in T + A∗. We note that Q cannot

have two consecutive hotlinks in A∗, otherwise one could obtain an assignment

better than A∗ through a fairly simple transformation (proof in the appendix).

This property of Q will be useful at the end of our analysis.

Proposition 3 There cannot be two consecutive hotlinks in Q.

We construct the assignment A by removing and adding some hotlinks

to A∗. The idea behind this construction is to bring subtrees of the ‘heavy’

tree Th closer to the root of T by adding new hotlinks to nodes in Q. In this

process, paths that reach nodes outside Th may be lengthier in T + A than

in T + A∗, but because Th has most of the weight of T (Hypothesis 1) the

expected path length in T + A is less than in T + A∗.

The general idea is the following. Consider a hotlink from a proper

ancestor u of h to a proper descendant v of h. Due to Hypothesis 1, most users

have to traverse node h and only a few users will make use of this hotlink. So

we can construct an assignment that replaces (u, v) by (u, v′), where v′ is a

proper ancestor of v. This way, more users will use the new hotlink instead of

traversing the long path Q and consequently the overall expected path should

be reduced. Finally, in order to ensure that the path from r to v does not

increase much in the new assignment, we add the hotlink (v′, v) to it. However,

this simple construction has two major problems. First, the expected path in

the new enhanced tree may not be shortened due to crossing hotlinks. In

addition, this new assignment may contain two hotlinks in node v′, and hence

may not be a valid 1-assignment. Great part of the work is directed to employ

this construction strategy while overcoming these drawbacks.

In order to simplify the analysis, we construct the assignment A as the

union of two auxiliary assignments A1 and A2. Informally, the assignment A1

is responsible for removing from A∗ hotlinks of nodes in Q, and the assignment

A2 adds new hotlinks to these nodes pointing to ‘balanced’ subtrees of Th. In

addition, because the assignments A1 and A2 are built on two different ‘parts’

of T , we can analyze them separately in order to bound the cost of A.

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 4. An FPTAS for the 1-Hotlink Assignment Problem 29

Construction and analysis of A1. For each node qi ∈ Q − {h} and for

each child j of qi, with j 6= qi+1, we define T j
i = Tj−Tqi+1

(Figure 4.2). We start

with A1 as the set of hotlinks of A∗ that have both endpoints in Q. Then, for

each T j
i , we add to A1 an optimal non-crossing assignment Aj

i for T j
i (Figure

4.3). Note that some nodes in Q do not have hotlinks in A1.

h

qi

Tu

i

u

T v

i

v

qi+1

Figure 4.2: Construction of trees T j
i . The path Q is depictured in bold.

(a)

h

(b)

h

Figure 4.3: (a) Illustration of enhanced tree T +A∗. (b) Illustration of enhanced
tree T +A1. The shaded nodes and subtrees may contain hotlinks, but not the
blank ones.

Because we have assumed A∗ to be non-crossing, our construction implies

that A1 is non-crossing as well. In addition, we have the following important

property, which is mostly due to the fact A1 contains all hotlinks of A∗ with

both endpoints in Q (proof in the appendix):

Lemma 5 For any node q ∈ Q, the user path from r to q is the same in T +A1

and in T + A∗.

Now we show that the cost of reaching nodes of T − Th in the enhanced

tree T +A1 is at most w(T) units greater than the cost of reaching these nodes

in T +A∗. As the trees {T j
i } define a partition of the leaves in T −Th, it suffices

to analyze the cost of reaching nodes in these trees.

Fix a tree T j
i . We claim that the path in T +A1 from r to a node u ∈ T j

i

has the form (r ; qi → j ; u). By the definition of the assignment, no proper

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 4. An FPTAS for the 1-Hotlink Assignment Problem 30

ancestor of qi can have a hotlink in A1 pointing to a node in T j
i . Therefore,

using Definition 1-(ii) it follows that T j
i ⊆ Tqi

(A1), or alternatively, that qi

belongs to the user path in T + A1 from r to u. Using an analogous argument,

it is easy to see that j also belongs to the user path from r to u in T + A1.

Hence, the user path in T +A1 from r to u can be written as (r ; qi → j ; u)

and the claim follows.

Again considering the fixed tree T j
i , the definition of the trees {T j′

i′ }

implies that the node qi belongs to Q−h. It then follows by the choice of h that

d(r, qi, T +A∗) < d(r, h, T +A∗) = c. Combining with this fact with Lemma 5,

we have can bound the distance from r to qi in T +A1 as d(r, qi, T +A1) ≤ c−1.

Weighting the paths (r ; qi → j ; u) for all u ∈ T j
i we have:

EP(T,A1)T j
i

=
∑

u∈T j
i

(

d(r, qi, T + A1) + 1 + d(j, u, T + A1)
)

w(u)

=
∑

u∈T j
i

(

d(r, qi, T + A1) + 1 + d(j, u, T j
i + Aj

i)
)

w(u)

≤ c · w(T j
i) + OPT(T j

i)

where the second equality follows from Proposition 1.

On the other hand, Lemma 2 assures that the contribution of T j
i to

EP(T,A∗) is not smaller than OPT(T j
i), hence EP(T,A1)T j

i
≤ c · w(T j

i) +

EP(T,A∗)T j
i
. Therefore, the total increase in the cost of reaching nodes in

{T j
i } (and consequently the nodes of T − Th) is:

EP(T,A1)T−Th
− EP(T,A∗)T−Th

=
∑

i,j

EP(T,A1)T j
i
−

∑

i,j

EP(T,A∗)T j
i

≤ c
∑

i,j

w(T j
i) = c · w(T − Th)

≤ w(T) (4)

where the last inequality follows from Hypothesis 1.

Construction of A2. Now we define the first step of the construction of

the assignment A2, which is illustrated in Figure 4.4. This step is responsible

for bringing nodes of Th closer to the root of T . Let D be the nodes of Q−{h}

which do not have hotlinks in A∗ pointing to nodes of Q. Moreover, define di

as the ith node of D, that is, the ith closest to the root of T . Let {H1, . . . , Hk}

be the partition of Th given by Lemma 3 with respect to w when U = Th and

α = 4w(T)/|D|. We can assume that the trees of our partition are labeled such

that for all i < j, r(Hi) is not an ancestor of r(Hj). Then the first step of the

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 4. An FPTAS for the 1-Hotlink Assignment Problem 31

construction of A2 consists of the following: initially define A2 as the set of

hotlinks of A∗ with both endpoints in Q; then add the hotlinks
⋃k

i=1(di, r(Hi))

to A2 (Figure 4.4).

H1

H2

d1

d2

H3

d3

Figure 4.4: Enhanced tree T + A2 after the first part of the construction, with
path Q in gray.

The second and last step of the construction of A2 is designed to control

the expansion of paths that reach nodes of Th − Th (Figure 4.5). Before

presenting this step, we need to define a few subtrees of Th which are illustrated

in Figure 4.5.a. Let S be the set of nodes in Th that are endpoints of hotlinks of

A∗ departing from nodes in D, namely S = {s ∈ Th : (d, s) ∈ A∗ for some d ∈

D}. For each meaningful pair i, j, we use Hj
i to denote the maximal subtree of

Hi rooted at the child j of r(Hi). A key property for our construction, which

is imposed by the choice of α in the decomposition of Th, states that for every

s ∈ S the tree Ts is a subtree of some Hj
i (proof in the appendix).

Lemma 6 Consider a node s ∈ S. Then Ts is a subtree of a tree Hj
i .

Lastly, define H
j

i = Hj
i − (

⋃

s∈S∩Hj
i
Ts). We remark that each H

j

i 6= ∅ is

a tree rooted at node j (see Lemma 20 in the appendix).

The second step of the construction of A2 consists of: (i) adding to A2 a

non-crossing optimal assignment As for each tree Ts with s ∈ S; (ii) adding

a non-crossing optimal assignment A
j

i for each of the trees {H
j

i}; (iii) adding,

for each meaningful pair i, j, the hotlinks
⋃

s∈S∩Hj
i
(r(Hj

i), s) (Figure 4.5.b).

Due to the assumed order of the trees {Hi}, it is easy to see that A2 does

not contain any crossing pair of hotlinks. Notice however that the roots of the

trees {Hj
i } may have more than one hotlink in A2, but we will remove them

later.

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 4. An FPTAS for the 1-Hotlink Assignment Problem 32

(a)

H
1

1

H
1

1 H
2

1

Ts1
Ts2

Ts4

Ts3

r(H1)

H
2

1

(b)

s1 s2

s3

s4

r(H1

1
) r(H2

1
)

Figure 4.5: Illustration of the second part of the construction of A2. (a) Tree

H1 and its subtrees {Hi}, {H
j
i }, {H

j

i} and {Ts}s∈S. (b) Addition of hotlinks
(r(Hj

i), s) for s ∈ S ∩Hj
i and optimal assignments for the subtrees of Hj1

i and
Hj2

i .

Analysis of A2. The following property is analogous to Lemma 5 presented

during the construction of A1 and can be proved with the same argument:

Lemma 7 For any node q ∈ Q, the user path from r to q is the same in T +A2

and in T + A∗.

Now we compare the cost of reaching nodes of Th in the enhanced trees

T +A∗ and T +A2. A first observation which will be used to bound the length

of paths in T +A2 is that users will necessarily traverse a node of D in order to

reach any node in Th. Informally, users trying to reach a node u in Hi traverse

the path Q until finding a node in dj which takes them closer to u and then

follow the path (dj → r(Hj) ; u). However, due to our ordering on the trees

{Hi′}, all nodes in D which are proper ancestors of di have hotlinks pointing

to nodes {r(Hi′)} which are non-ancestors of r(Hi) and consequently, because

Hi is a tree, non-ancestors of u. Therefore, di is the first node of D that has

a hotlink which takes such users closer to u and hence di belongs to the user

path from r to u in T + A2. This result is formalized in the following lemma

which is proved in the appendix:

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 4. An FPTAS for the 1-Hotlink Assignment Problem 33

Lemma 8 Consider a tree Hi and a node u ∈ Hi. Then the user path in T +A2

from r to u contains the node di.

We remark that the trees {Ts}s∈S and Th form a partition of Th (see

Lemma 19 in the appendix). Therefore, it suffices to analyze separately the

cost of reaching nodes of these trees.

First we argue that the path in T + A2 for reaching nodes of the trees

{Ts}s∈S is not much longer than the path for reaching these nodes in the

optimal enhanced trees T + A∗. For some node s ∈ S, consider the tree Ts.

From Lemma 6, Ts is contained in a tree, say, Hj
i . Based on Lemma 8 and

on the fact that r(Hi) does not have any hotlink in A2, it is not difficult to

see that the user path in T + A2 from r to a node u ∈ Ts has the form

(r ; di → r(Hi) → r(Hj
i) → s ; u). Therefore, weighting the paths (r ; u)

over all nodes u of Ts, we have:

EP(T,A2)Ts
=

∑

u∈Ts

(

d(r, di, T + A2) + 3 + d(s, u, T + A2)
)

w(u)

=
∑

u∈Ts

(

d(r, di, T + A2) + 3 + d(s, u,Ts + As)
)

w(u)

= d(r, di, T + A∗)w(Ts) + 3w(Ts) + OPT(Ts)

where the second equality follows from Proposition 1 and the third equality

follows from Lemma 7.

On the other hand, Lemma 2 asserts that the cost of reaching nodes of

Ts in the optimal enhanced tree T + A∗ is at least OPT(Ts). Using the fact

that the trees {Ts}s∈S define a partition of the nodes of Th −Th, we have that

the total difference in the cost of reaching nodes of Th − Th in T + A2 and

T + A∗ is:

EP(T,A2)Th−Th
− EP(T,A∗)Th−Th

=
∑

s∈S

EP(T,A2)Ts
−

∑

s∈S

EP(T,A∗)Ts

≤
k

∑

i=1

∑

s∈S∪Hi

d(r, di, T + A∗)w(Ts) + 3w(Th − Th) (5)

Now we need to bound the cost of reaching nodes of Th in the enhanced

tree T + A2. We first argue that the trees {H
j

i} and {r(Hi)} form a partition

of the nodes of Th. Because the trees Th and {Ts}s∈S form a partition of Th,

it follows that the nodes of Th are exactly the nodes of Th−
⋃

s∈S Ts. Noticing

that the trees {Hj
i } and {r(Hi)} form a partition of the nodes of Th, it follows

from Lemma 6 that the nodes of Th are exactly the nodes of {H
j

i} ∪ {r(Hi)}.

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 4. An FPTAS for the 1-Hotlink Assignment Problem 34

Therefore, in order to bound the cost of reaching nodes of Th, it suffices to

analyze separately the nodes of the trees {H
j

i} and {r(Hi)}.

Consider a nonempty tree H
j

i . By the same arguments of previous

analysis, it is not difficult to see that the path in T + A2 from r to a node

u ∈ H
j

i has the form (r ; di → r(Hi) → j ; u). Weighting these paths over

all nodes u of H
j

i gives the cost of reaching the nodes of H
j

i in T + A2:

EP(T,A2)
H

j
i

=
∑

u∈H
j
i

(d(r, di, T + A2) + 2 + d(j, u, T + A2))w(u)

=
∑

u∈H
j
i

(d(r, di, T + A2) + 2 + d(j, u, H
j

i + A
j

i))w(u)

≤ d(r, di, T + A2)w(H
j

i) + 2w(H
j

i) + OPT(H
j

i)

where the second equality follows from Proposition 1 (recall that H
j

i 6= ∅

implies that j is the root of H
j

i).

Due to the uniqueness of user paths on enhanced trees, the above

argument implies that the user path from r to r(Hi) in T + A2 is (r ; di →

r(Hi)), and consequently EP(T,A2)r(Hi) = d(r, di, T +A2)w(r(Hi))+w(r(Hi)).

Adding the costs of reaching nodes of the trees {H
j

i} and {r(Hi)} we

conclude that the cost of reaching all nodes of Th in T + A2 is at most:

EP(T,A2)Th
≤

k
∑

i=1

d(r, di, T + A2)(
∑

j

w(H
j

i) + w(r(Hi))) + 2w(Th) +
∑

i,j

OPT(H
j

i)

≤
k

∑

i=1

d(r, di, T + A∗)(
∑

j

w(H
j

i) + w(r(Hi))) + 2w(Th) + OPT(Th)

where the first and the last terms of the last inequality follow from Lemma 7

and Corollary 1, respectively.

On the other hand, consider the path in T + A∗ from r to a node u

in Th. Recalling that Th = Th(A
∗), it follows that this path has the form

(r ; h ; u), which, by Hypothesis 1, has length c+d(h, u, T +A∗). Weighting

this path for all nodes u ∈ Th, it follows that the cost of reaching nodes of Th

in T + A∗ is at least c ·w(Th) + OPT(Th). Hence, subtracting the bounds for

EP(T,A2)Th
and EP(T,A∗)Th

we have:

EP(T,A2)Th
− EP(T,A∗)Th

≤
k

∑

i=1

d(r, di, T + A∗)(
∑

j

w(H
j

i) + w(r(Hi))) + 2w(Th) − c · w(Th) (6)

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 4. An FPTAS for the 1-Hotlink Assignment Problem 35

Then adding inequalities (5) and (6) and employing Lemma 6, we have

the difference between the cost of reaching nodes of Th in T +A∗ and in T +A2:

EP(T,A2)Th
− EP(T,A∗)Th

≤
k

∑

i=i

d(r, di, T + A∗)w(Hi) + 3w(Th) − c · w(Th)

≤
k

∑

i=i

d(r, di, T + A∗)w(Hi) + 3w(Th)

−(c − 1) · w(T) (7)

where the last inequality follows from Hypothesis 1.

Now we need to bound the first term of the right-hand side of inequality

(7). Because there cannot be two consecutive hotlinks in Q, it is not difficult to

see that the distance d(r, di, T +A∗) can be upper bounded by 2i. In addition,

because at least k − 1 of the trees {Hi} have weight greater than 4w(T)/|D|,

it follows that k can be at most (|D|/4) + 1 (otherwise
∑

i w(Hi) > w(T)).

Therefore, for all i ≤ k we have d(r, di, T +A∗) ≤ 2i ≤ 2k ≤ (|D|/2)+2. Then

the first term of the right-hand side of inequality (7) can be bounded by:

k
∑

i=i

d(r, di, T + A∗)w(Hi) ≤

(

|D|

2
+ 2

) k
∑

i=1

w(Hi) ≤

(

|D|

2
+ 2

)

w(T) ≤
(c

2
+ 2

)

w(T)

Finally, employing this bound to inequality (7) we have:

EP(T,A∗)Th
− EP(T,A2)Th

≥
(c

2
− 6

)

w(T) (8)

Analysis of A1 ∪ A2. Let A′ be the set union of the assignments A1 and

A2, that is, hotlinks that appear in both sets are only included once in A′.

A first observation is that, due to their construction, both A1 and A2

have the same set of hotlinks with both endpoints in Q, and consequently so

does A′. As A2 do not have hotlinks with endpoints in {T j
i }, it follows that

A1 and A′ have the same set of hotlinks with both endpoints in Q ∪ {T j
i }, or

alternatively in T − Th. Thus, employing Proposition 1 with T ′ = T − Th we

have that EP(T,A′)T−Th
= EP(T,A1)T−Th

.

Now let P be the path in T + A2 from r to a node u ∈ Th. According to

previous discussions, the path P has the form (r ; di → r(Hi) ; u) for some

di ∈ D. Moreover, because di belongs to Q, it is easy to see that the path in

T + A∗ from r to di is the subpath (r = q1 → q2 → . . . → qj = di) of Q. Then

Lemma 7 implies that P has the form (q1 → q2 → . . . → qj → r(Hi) ; u).

Because A1 do not have hotlinks departing from nodes in Th ⊇ Hi, is easy to

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 4. An FPTAS for the 1-Hotlink Assignment Problem 36

see that nodes in P have the same hotlinks in A2 and in A′. It then follows

from Proposition 2 that EP(T,A′)Th
= EP(T,A2)Th

.

Therefore, using these observations and employing the bounds from

inequalities (4) and (8), we have:

EP(T,A∗) − EP(T,A′) = (EP(T,A∗)Th
− EP(T,A′)Th

)

+(EP(T,A∗)T−Th
− EP(T,A′)T−Th

)

≥
(c

2
− 7

)

w(T) (9)

Notice we can choose the value of c as a sufficiently large constant such

that the right-hand side of the previous inequality is strictly positive, which

implies that EP(T,A∗) > EP(T,A′). However, this does not contradict the

optimality of A∗ as A′ may have more than one hotlink at the roots of {Hj
i }

and therefore may not be a valid 1-assignment.

Removing multiple hotlinks. First notice that, due to its construction,

only the roots of the trees Hj
i can have more than one hotlink in A′. More

specifically, a node r(Hj
i) has exactly |S ∩ Hj

i | hotlinks in A′. Let A′j
i be the

set of hotlinks of A′ with both endpoints in Hj
i . Lemma 1 asserts there is a

1-assignment Aj
i for Hj

i such that EP(Hj
i , A

j
i) ≤ EP(Hj

i , A
′j
i)+ |S∩Hj

i |w(Hj
i).

In order to obtain a 1-assignment for T , we can replace each {A′j
i } in A′ by Aj

i ,

that is, we define A = A′ − (
⋃

i,j A′j
i)∪ (

⋃

i,j Aj
i). Fortunately, as proved in the

appendix by means Lemma 21 and Corollary 2, the cost of A has a very natural

relation to the cost of A′: EP(T,A) = EP(T,A′) +
∑

i,j |S ∩Hj
i |w(Hj

i). Due to

the construction of the trees {Hi}, w(Hj
i) ≤ 4w(T)/|D| for all meaningful i, j.

Therefore:

EP(T,A) − EP(T,A′) ≤
∑

i,j

|S ∩ Hj
i |w(Hj

i) ≤
4w(T)

|D|

∑

i,j

|S ∩ Hj
i |

=
4w(T)|S|

|D|
≤ 4w(T)

where the last inequality follows from the definition of S.

Finally, combining the previous inequality with (9) we can compare the

costs of A and A∗:

EP(T,A∗) − EP(T,A) ≥
(c

2
− 11

)

w(T)

By choosing c = 23 the right-hand side becomes positive, implying

that EP(T,A∗) > EP(T,A). Because A is a valid 1-assignment for T , this

contradicting the optimality of A∗ and concludes the proof of the theorem.

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

